Effect of Filler Morphology on the Electrical and Thermal Conductivity of PP/Carbon-Based Nanocomposites

Author:

Zaccone MartaORCID,Frache AlbertoORCID,Torre Luigi,Armentano Ilaria,Monti MarcoORCID

Abstract

In this paper, we studied the effect of different carbon-based nanostructures on the electrical and mechanical properties of polypropylene (PP) nanocomposites. Multi-walled carbon nanotubes (MWCNT), expanded graphite (EG), and two different carbon black nanoparticles (CB) have been dispersed at several weight contents in the polymer matrix through a melt extrusion process. The produced nanocomposites have been used to obtain samples for the characterization by injection molding. The dispersion of the nanoparticles in the matrix has been evaluated by scanning electron microscopy (SEM) analysis. The electrical characterization has been performed both in DC and in AC configuration. The mechanical properties have been evaluated with both tensile test and impact strength (Izod). The thermal conductivity has been also evaluated. As a result, MWCNTs are the nanoadditive with the lowest electrical percolation threshold. This allows MWCNT nanocomposite to drastically change the electrical behavior without a significant embrittlement observed with the other nanoadditives. However, CB with the lowest surface area allows the highest conductivity, even though at a high particle content. EG has a limited effect on electrical properties, but it is the only one with a significant effect on thermal conductivity.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference53 articles.

1. Electrically Conductive Polymer and Polymer Composites: From Synthesis to Biomedical Applications,2018

2. Conductive Polymer Composites Based on Carbon Nanomaterials;Tiwari,2017

3. Electrical and thermal properties of composite of liquid crystalline polymer filled with carbon black

4. Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy

5. Carbon based conductive polymer composites;Wei;J. Mater. Sci.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3