Physical–mechanical properties of multifunctional thermoplastic elastomers based on polyolefins and styrene-butadiene elastomer

Author:

Kakhramanov Najaf1,Allahverdiyeva Khayala1,Gahramanli Yunis2,Mustafayeva Fatima1ORCID,Martynova Galina3

Affiliation:

1. Laboratory of mechano-chemical modification and processing of polymers, Institute of Polymer Materials of Ministry of Science and Education Republic of Azerbaijan, Sumgait, Azerbaijan Republic

2. Technology of Chemical and Inorganic Substances Department, Chemical Technology Faculty, Azerbaijan State Oil and Industry University, Baku, Azerbaijan Republic

3. Laboratory of geochemistry of petroleum, Institute of Geology and Geophysics of Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan Republic

Abstract

The article presents the results of a study of the effect of the content of styrene-butadiene elastomer on the change in ultimate tensile stress, tensile yield strength, elongation at break, flexural strength, enthalpy and melting temperature, Vicat softening temperature, and melt flow rate of polymer blends based on a wide range of thermoplastic polyolefins: high-density polyethylene, low-density polyethylene, polypropylene, ethylene-hexene-1 copolymer, polypropylene random copolymer, and block copolymer of ethylene with propylene. Nanoparticles of technical carbon (TC), aluminum, and calcium stearate were used as fillers. It has been shown that, depending on the type of polyolefin used and the specific concentration of elastomer, the polymer mixture can acquire the properties of a thermoplastic elastomer (TPE). In high-density polyethylene and an ethylene-hexene-1 copolymer, the properties of TPE appear at an elastomer concentration of 30 wt %; in low-density polyethylene, this effect occurs at its 20 wt % content. In polypropylene, polypropylene random copolymer, and ethylene-propylene block copolymer, TPE properties appear at 40 wt % concentration of the elastomeric component. This was confirmed by the results of scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, as well as the “stress–strain” dependence of polymer mixtures. To achieve technological compatibility and miscibility of non-polar polyolefins with polar elastomer, compatibilizers based on high-density polyethylene and polypropylene modified with maleic anhydride were used. It is shown that the equality of the values of the ultimate tensile stress and the tensile yield strength is a consequence of the occurrence of phase inversion in the polymer mixture, that is, change of the dispersed medium to the dispersed phase and vice versa.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3