Antioxidative Properties of Baltic Sea Keystone Macroalgae (Fucus vesiculosus, Phaeophyceae) under Ocean Warming and Acidification in a Seasonally Varying Environment

Author:

Graiff AngelikaORCID,Karsten UlfORCID

Abstract

The keystone macroalga Fucus vesiculosus (Phaeophyceae), dominating shallow hard bottom zones, encounters a strongly and rapidly changing environment due to anthropogenic change over the last decades in the Baltic Sea. Thus, in four successive benthic mesocosm experiments, the single and joint effects of increased temperature (Δ + 5 °C) and pCO2 (1100 ppm) under ambient irradiances were experimentally tested on the antioxidative properties of western Baltic F. vesiculosus in all seasons. The antioxidative properties (superoxide dismutase activity and lipid peroxidation) as well as the sensitivity of F. vesiculosus photosynthetic performance (i.e., effective quantum yield) to oxidative stress under these global change scenarios were seasonally examined. F. vesiculosus exhibited high and relatively constant photosynthetic performance under artificial hydrogen peroxide (H2O2) stress in all seasons. High activities of superoxide dismutase and a relatively low degree of the biomarker for lipid peroxidation (malondialdehyde concentration) were found in F. vesiculosus. Thus, Baltic F. vesiculosus is equipped with a high antioxidative potential to tolerate strong oxidative stress for at least short periods. Antioxidative properties of F. vesiculosus were more strongly affected by warming than by acidification, resulting in significantly increased malondialdehyde concentrations under elevated temperature levels in all seasons. Oxidative stress was enhanced in F. vesiculosus under warming but seem to be modulated by seasonally varying environmental conditions (e.g., high and low irradiances) and pCO2 levels. However, more frequent summer heatwaves reaching and surpassing lethal temperatures in shallow coastal waters may determine the F. vesiculosus population’s overall persistence in the Baltic Sea.

Funder

Federal Ministry of Education and Research

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3