Identification of Critical Genes for Ovine Horn Development Based on Transcriptome during the Embryonic Period

Author:

Luan Yuanyuan12,Wu Shangjie12,Wang Mingkun12,Pu Yabin12,Zhao Qianjun12,Ma Yuehui12ORCID,Jiang Lin12ORCID,He Xiaohong12

Affiliation:

1. Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China

2. Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China

Abstract

Horns, also known as headgear, are a unique structure of ruminants. As ruminants are globally distributed, the study of horn formation is critical not only for increasing our understanding of natural and sexual selection but also for the breeding of polled sheep breeds to facilitate modern sheep farming. Despite this, a significant number of the underlying genetic pathways in sheep horn remain unclear. In this study, to clarify the gene expression profile of horn buds and investigate the key genes in horn bud formation, RNA-sequencing (RNA-seq) technology was utilized to investigate differential gene expression in the horn buds and adjacent forehead skin of Altay sheep fetuses. There were only 68 differentially expressed genes (DEGs) identified, consisting of 58 up-regulated genes and 10 down-regulated genes. RXFP2 was differentially up-regulated in the horn buds and had the highest significance (p-value = 7.42 × 10−14). In addition, 32 DEGs were horn-related genes identified in previous studies, such as RXFP2, FOXL2, SFRP4, SFRP2, KRT1, KRT10, WNT7B, and WNT3. Further, Gene Ontology (GO) analysis showed that the DEGs were mainly enriched with regard to growth, development, and cell differentiation. Pathway analysis revealed that the Wnt signaling pathway may be responsible for horn development. Further, through combining the protein–protein interaction networks of the DEGs, it was found that the top five hub genes, namely, ACAN, SFRP2, SFRP4, WNT3, and WNT7B, were also associated with horn development. Our results suggest that only a few key genes, including RXFP2, are involved in bud formation. This study not only validates the expression of candidate genes identified at the transcriptome level in previous studies but also provides new possible marker genes for horn development, which may promote our understanding of the genetic mechanisms of horn formation.

Funder

National Key Research and Development Program of China

Agricultural Science and Technology Innovation Program of China

National Infrastructure of Domestic Animal Resources

Earmarked Fund for Modern Agro-industry Technology Research System

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3