Development and Comparison of Two Novel Hybrid Neural Network Models for Hourly Solar Radiation Prediction

Author:

Mukhtar MustaphaORCID,Oluwasanmi Ariyo,Yimen NasserORCID,Qinxiu Zhang,Ukwuoma Chiagoziem C.,Ezurike Benjamin,Bamisile Olusola

Abstract

There are a lot of developing countries with inadequate meteorological stations to measure solar radiation. This has been a major drawback for solar power applications in these countries as the performance of the solar-powered system cannot be accurately forecasted. In this study, two novel hybrid neural networks namely; convolutional neural network/artificial neural network (CNN-ANN) and convolutional neural network/long short-term memory/artificial neural network (CNN-LSTM-ANN), have been developed for hourly global solar radiation prediction. ANN models are also developed and the performance of the hybrid neural network models is compared with it. This study contributes to the search for more accurate solar radiation estimation methods. The hybrid neural network models are trained/tested with data from ten different countries across Africa. Results from this study indicate that the performance of all the hybrid models developed in this study is superior to what has been presented in existing literature with their r values ranging from 0.9662 to 0.9930. CNN-ANN model is the best for solar radiation forecasting in Southern, Central, and West Africa. CNN-LSTM-ANN is better for East Africa while both CNN-ANN and CNN-LSTM-ANN are suitable for North Africa. CNN-ANN application for solar radiation prediction in Chad had the overall best performance with an r-value, MAE, RMSE, and MAPE of 0.9930, 15.70 W/m2, 46.84 W/m2, and 4.98% respectively. The integration of CNN and LSTM algorithms with an ANN model enhanced long-term computational dependency and reduce error terms for the model.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3