Abstract
Intelligent energy facilities, e.g., smart grids and microgrids are the evolution of traditional energy grids through digital transformation. These modern paradigms are expected to foster the utilization of renewable energies, sustainable development, and resilience of the power grid. A barrier found when deploying experimental smart grids and microgrids consists of handling the heterogeneity of the required hardware and software components as well as the available commercial equipment. Despite the fact that there is various architecture proposed in previous literature, it commonly lacks experimental validation, specification of involved equipment concerning industrial/proprietary or open-source nature, and concretization of communication protocols. To overcome such drawbacks, this paper proposes an innovative multi-layered architecture to deploy heterogeneous automation and monitoring systems for microgrids. The architecture is structured into six functional layers to organize the hardware and software equipment in an integrated manner. The open protocol Modbus TCP is chosen to harmonize communications, enabling the interconnection of equipment from industrial and energy scopes, indeed of open-source nature. An experimental photovoltaic-based smart microgrid is reported as the application case to demonstrate the suitability and validity of the proposal.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献