Abstract
Microgrids represent a flexible way to integrate renewable energy sources with programmable generators and storage systems. In this regard, a synergic integration of those sources is crucial to minimize the operating cost of the microgrid by efficient storage management and generation scheduling. The forecasts of renewable generation can be used to attain optimal management of the controllable units by predictive optimization algorithms. This paper introduces the implementation of a two-layer hierarchical energy management system for islanded photovoltaic microgrids. The first layer evaluates the optimal unit commitment, according to the photovoltaic forecasts, while the second layer deals with the power-sharing in real time, following as close as possible the daily schedule provided by the upper layer while balancing the forecast errors. The energy management system is experimentally tested at the Multi-Good MicroGrid Laboratory under three different photovoltaic forecast models: (i) day-ahead model, (ii) intraday corrections and (iii) nowcasting technique. The experimental study demonstrates the capability of the proposed management system to operate an islanded microgrid in safe conditions, even with inaccurate day-ahead photovoltaic forecasts.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献