Gaussian Process Surrogates for Modeling Uncertainties in a Use Case of Forging Superalloys

Author:

Hoffer Johannes G.ORCID,Geiger Bernhard C.ORCID,Kern RomanORCID

Abstract

The avoidance of scrap and the adherence to tolerances is an important goal in manufacturing. This requires a good engineering understanding of the underlying process. To achieve this, real physical experiments can be conducted. However, they are expensive in time and resources, and can slow down production. A promising way to overcome these drawbacks is process exploration through simulation, where the finite element method (FEM) is a well-established and robust simulation method. While FEM simulation can provide high-resolution results, it requires extensive computing resources to do so. In addition, the simulation design often depends on unknown process properties. To circumvent these drawbacks, we present a Gaussian Process surrogate model approach that accounts for real physical manufacturing process uncertainties and acts as a substitute for expensive FEM simulation, resulting in a fast and robust method that adequately depicts reality. We demonstrate that active learning can be easily applied with our surrogate model to improve computational resources. On top of that, we present a novel optimization method that treats aleatoric and epistemic uncertainties separately, allowing for greater flexibility in solving inverse problems. We evaluate our model using a typical manufacturing use case, the preforming of an Inconel 625 superalloy billet on a forging press.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. Computational Optimization, Modelling and Simulation: Recent Trends and Challenges

2. A statistical approach to some basic mine valuation problems on the Witwatersrand;Krige;J. S. Afr. Inst. Min. Metall.,1951

3. hetGP: Heteroskedastic Gaussian Process Modeling and Sequential Design in R

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3