Combining Gaussian Process Regression with Poisson Blending for Seamless Cloud Removal from Optical Remote Sensing Imagery for Cropland Monitoring

Author:

Park Soyeon1ORCID,Park No-Wook1ORCID

Affiliation:

1. Department of Geoinformatic Engineering, Inha University, Incheon 22212, Republic of Korea

Abstract

Constructing optical image time series for cropland monitoring requires a cloud removal method that accurately restores cloud regions and eliminates discontinuity around cloud boundaries. This paper describes a two-stage hybrid machine learning-based cloud removal method that combines Gaussian process regression (GPR)-based predictions with image blending for seamless optical image reconstruction. GPR is employed in the first stage to generate initial prediction results by quantifying temporal relationships between multi-temporal images. GPR predictive uncertainty is particularly combined with prediction values to utilize uncertainty-weighted predictions as the input for the next stage. In the second stage, Poisson blending is applied to eliminate discontinuity in GPR-based predictions. The benefits of this method are illustrated through cloud removal experiments using Sentinel-2 images with synthetic cloud masks over two cropland sites. The proposed method was able to maintain the structural features and quality of the underlying reflectance in cloud regions and outperformed two existing hybrid cloud removal methods for all spectral bands. Furthermore, it demonstrated the best performance in predicting several vegetation indices in cloud regions. These experimental results indicate the benefits of the proposed cloud removal method for reconstructing cloud-contaminated optical imagery.

Funder

National Research Foundation of Korea

Rural Development Administration, Republic of Korea

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3