High-Speed Motion Analysis-Based Machine Learning Models for Prediction and Simulation of Flyrock in Surface Mines

Author:

Mishra Romil1ORCID,Mishra Arvind Kumar12,Choudhary Bhanwar Singh1ORCID

Affiliation:

1. Department of Mining Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India

2. CSIR-Central Institute of Mining and Fuel Research, Dhanbad 826015, India

Abstract

Blasting is a cost-efficient and effective technique that utilizes explosive chemical energy to generate the necessary pressure for rock fragmentation in surface mines. However, a significant portion of this energy is dissipated in undesirable outcomes such as flyrock, ground vibration, back-break, etc. Among these, flyrock poses the gravest threat to structures, humans, and equipment. Consequently, the precise estimation of flyrock has garnered substantial attention as a prominent research domain. This research introduces an innovative approach for demarcating the hazardous zone for bench blasting through simulation of flyrock trajectories with probable launch conditions. To accomplish this, production blasts at five distinct surface mines in India were monitored using a high-speed video camera and data related to blast design and flyrock launch circumstances including the launch velocity (vf) were gathered by conducting motion analysis. The dataset was then used to develop ten Bayesian optimized machine learning regression models for predicting vf. Among all the models, the Extremely Randomized Trees Regression model (ERTR-BO) demonstrated the best predictive accuracy. Moreover, Shapely Additive Explanation (SHAP) analysis of the ERTR-BO model unveiled bulk density as the most influential input feature in predicting vf, followed by other features. To apply the model in a real-world setting, a user interface was developed to aid in flyrock trajectory simulation during bench blast designing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3