Opportunities and Challenges Arising from Rapid Cryospheric Changes in the Southern Altai Mountains, China

Author:

Zhang WeiORCID,Shen YongpingORCID,Chen An’an,Wu XuejiaoORCID

Abstract

Optimizing the functions and services provided by the mountain cryosphere will maximize its benefits and minimize the negative impacts experienced by the populations that live and work in the cryosphere-fed regions. The high sensitivity of the mountain cryosphere to climate change highlights the importance of evaluating cryospheric changes and any cascading effects if we are to achieve regional sustainable development goals (SDGs). The southern Altai Mountains (SAM), which are located in the arid to semi-arid region of central Asia, are vulnerable to ecological and environmental changes as well as to developing economic activities in northern Xinjiang, China. Furthermore, cryospheric melting in the SAM serves as a major water resource for northeastern Kazakhstan. Here, we systematically investigate historical cryospheric changes and possible trends in the SAM and also discover the opportunities and challenges on regional water resources management arising from these changes. The warming climate and increased solid precipitation have led to inconsistent trends in the mountain cryosphere. For example, mountain glaciers, seasonally frozen ground (SFG), and river ice have followed significant shrinkage trends as evidenced by the accelerated glacier melt, shallowed freezing depth of SFG, and thinned river ice with shorter durations, respectively. In contrast, snow accumulation has increased during the cold season, but the duration of snow cover has remained stable because of the earlier onset of spring melting. The consequently earlier melt has changed the timing of surface runoff and water availability. Greater interannual fluctuations in snow cover have led to more frequent transitions between snow cover hazards (snowstorm and snowmelt flooding) and snow droughts, which pose challenges to hydropower, agriculture, aquatic life, the tail-end lake environment, fisheries, and transboundary water resource management. Increasing the reservoir capacity to regulate interannual water availability and decrease the risk associated with hydrological hazards related to extreme snowmelt may be an important supplement to the regulation and supply of cryospheric functions in a warmer climate.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3