Diurnal Impact of Below-Cloud Evaporation on Isotope Compositions of Precipitation on the Southern Slope of the Altai Mountains, Central Asia

Author:

Wang ShengjieORCID,Duan Lihong,Xia Yijie,Qu Deye,She Yuanyang

Abstract

Precipitation is an important natural resource relating to regional sustainability in arid central Asia, and the stable oxygen and hydrogen isotopes provide useful tracers to understand precipitation processes. In this study, we collected the hourly meteorological data at several stations on the southern slope of the Altai Mountains in arid central Asia, from March 2017 to June 2022, and examined the diurnal impact of below-cloud evaporation on stable isotope compositions of precipitation. During nighttime, the changes in isotope compositions below cloud base are generally weak. The enhanced impact of below-cloud evaporation can be found after around 15:00, and the impact is relatively strong in the afternoon, especially from 18:00 to 22:00. Summer and spring usually have a larger impact of below-cloud evaporation than autumn, and the winter precipitation is generally not influenced by below-cloud evaporation. On an annual basis, the differences in evaporation-led isotope changes between daytime and nighttime are 1.1‰ for stable oxygen isotope compositions, 4.0‰ for stable hydrogen isotope compositions and 4.7‰ for deuterium excess. The period from 2:00 to 10:00 shows relatively low sensitivity to relative humidity, and from 14:00 to 22:00 the impacts are sensitive. Considering the fluctuations of precipitation isotope compositions, the impact of below-cloud evaporation does not greatly modify the seasonal environmental signals.

Funder

National Natural Science Foundation of China

Northwest Normal University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3