The sensitivity and evolutionary trajectory of the mountain cryosphere: Implications for mountain geomorphic systems and hazards

Author:

Knight Jasper1ORCID,Harrison Stephan2

Affiliation:

1. School of Geography, Archaeology and Environmental Studies University of the Witwatersrand Johannesburg South Africa

2. College of Life and Environmental Sciences University of Exeter Penryn UK

Abstract

AbstractGlobal climate change gives rise to changing spatial patterns of snow and ice, especially over mountain blocks where orographic and synoptic circulation effects play significant roles in creating patterns of precipitation and glacier development. The presence of snow and ice results in heat balance changes and other land surface feedbacks that have implications for patterns of mountain glacier retreat and the dynamics of mountain geomorphic systems. This study considers the sensitivity of the mountain cryosphere (snow, ice, permafrost) to global climate change, and the implications of this sensitivity analysis for evaluating mountain surface stability, geomorphic change, and the generation of mountain geohazards. Consideration of these issues is informed by evidence from case studies reported in the literature and by field observations of mountain system dynamics worldwide. Results show that ‘sensitivity’ to climate forcing has been interpreted and defined in different ways in mountain snow, ice, and permafrost systems, with respect to properties such as albedo, mass balance or rapidity of system change. There are also significant spatial differences in sensitivity between different mountain blocks for snow, ice and permafrost, and these regions are therefore likely to follow different trajectories of geomorphic change in response to climate forcing, related to their physiographic properties and the extent of cryospheric coverage. Within glaciated mountains in particular, the relative timing of different geomorphic events, and the interplay between slope, glacier front, and proglacial sediment sources and environments, may vary depending on glacier size, geomorphic setting, and microclimate. By contrast, responses to permafrost warming (increased surface instability and mass movements) and changes in snow patterns (avalanche risk, floods) may have quite different spatial and temporal patterns and influenced by different environmental controls. An integrated evolutionary model for mountain system development under a changing cryosphere is proposed, highlighting the critical role of energy balance as a forcing factor that then triggers downstream mountain system responses. This suggests that different elements of mountain systems exhibit different sensitivities, and furthermore that these sensitivities change over time and space through the period of anthropogenic global warming and paraglacial relaxation.

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3