Urban Plants Classification Using Deep-Learning Methodology: A Case Study on a New Dataset

Author:

Litvak MarinaORCID,Divekar Sarit,Rabaev IrinaORCID

Abstract

Plant classification requires the eye of an expert in botanics when the subtle differences in stem or petals differentiate between different species. Hence, an accurate automatic plant classification might be of great assistance to a person who studies agriculture, travels, or explores rare species. This paper focuses on a specific task of urban plants classification. The possible practical application of this work is a tool which assists people, growing plants at home, to recognize new species and to provide the relevant caring instructions. Because urban species are barely covered by the benchmark datasets, these species cannot be accurately recognized by the state-of-the-art pre-trained classification models. This paper introduces a new dataset, Urban Planter, for plant species classification with 1500 images categorized into 15 categories. The dataset contains 15 urban species, which can be grown at home in any climate (mostly desert) and are barely covered by existing datasets. We performed an extensive analysis of this dataset, aimed at answering the following research questions: (1) Does the Urban Planter dataset provide enough information to train accurate deep learning models? (2) Can pre-trained classification models be successfully applied on Urban Planter, and is the pre-training on ImageNet beneficial in comparison to the pre-training on a much smaller but more relevant dataset? (3) Does two-step transfer learning further improve the classification accuracy? We report the results of experiments designed to answer these questions. In addition, we provide the link to the installation code of the alpha version and the demo video of the web app for urban plants classification based on the best evaluated model. To conclude, our contribution is three-fold: (1) We introduce a new dataset of urban plant images; (2) We report the results of an extensive case study with several state-of-the-art deep networks and different configurations for transfer learning; (3) We provide a web application based on the best evaluated model. In addition, we believe that, by extending our dataset in the future to eatable plants and assisting people to grow food at home, our research contributes to achieve the United Nations’ 2030 Agenda for Sustainable Development.

Publisher

MDPI AG

Reference35 articles.

1. Blooming flower recognition by using eigenvalues of shape features;Tan;Proceedings of the Sixth International Conference on Digital Image Processing (ICDIP 2014),2014

2. Petals’ shape descriptor for blooming flowers recognition;Tan;Proceedings of the Fourth International Conference on Digital Image Processing (ICDIP 2012),2012

3. Self-adaptive feature extraction scheme for mobile image retrieval of flowers;Phyu;Proceedings of the 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems,2012

4. An interactive flower image recognition system

5. Automatic recognition of flowers through color and edge based contour detection;Hong;Proceedings of the 2012 3rd International conference on image processing theory, tools and applications (IPTA),2012

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3