Houseplant leaf classification system based on deep learning algorithms

Author:

Hama Hersh M.ORCID,Abdulsamad Taib Sh.ORCID,Omer Saman M.ORCID

Abstract

AbstractBotanical experts are typically relied upon to classify houseplants since even subtle differences in characteristics such as leaves can distinguish one species from another. Therefore, an automated system for recognizing houseplant leaves with accuracy and reliability becomes a valuable asset for the identification of indoor plant species. In this paper, a houseplant leaf classification system utilizing deep learning algorithms is proposed, which has been improved to effectively classify and identify a variety of houseplant leaf types. The system uses the ResNet-50 architecture based on convolutional neural network to analyze features of the leaf images and extract relevant information for classification. In addition, this work presents a newly constructed local dataset consisting of 2500 images to classify species of houseplant leaves. The dataset includes ten types of houseplant leaves that are suitable for cultivation in various climates at home. The dataset was augmented using data augmentation algorithms to increase its size and reduce overfitting. The developed system was training and testing using a local dataset. To evaluate the improved model, comparative experiments were conducted utilizing pre-trained models (original ResNet-50 and MobileNet_v2). The improved model revealed recognition accuracy of 99% with the augmented dataset and 98.60% without the augmentation, affirming its effectiveness. The improved model could potentially be used in various fields, including horticulture, plant pathology, and environmental monitoring to identify plant species.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3