Affiliation:
1. Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
2. Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
Abstract
Sunflower is a crop that has many economic values and ornamental usages. However, its production can be hampered due to various diseases such as downy mildew, gray mold, and leaf scars, and it is challenging for farmers to identify disease-prone conditions with traditional approaches. Thus, a computerized model composed of vision, artificial intelligence, and machine learning is the demand of the age to detect diseases in plants efficiently. In this paper, we develop a hybrid model with transfer learning (TL) and a simple CNN using a small dataset for detecting sunflower diseases. Out of the eight models tested on the dataset of four different classes (downy mildew, gray mold, leaf scars, and fresh leaf), the VGG19 + CNN hybrid model achieves the best results in terms of precision, recall, F1-score, accuracy, Hamming loss, Matthews coefficient, Jaccard score, and Cohen’s kappa metrics. The experimental outcomes show that the proposed model provides better precision, recall, and accuracy than other approaches on the benchmark dataset.
Funder
Deanship of Scientific Research, Taif University
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献