Optimal Sensor Formation for 3D Cooperative Localization of AUVs Using Time Difference of Arrival (TDOA) Method

Author:

Bo Xu,Razzaqi Asghar,Wang Xiaoyu

Abstract

The cooperative localization of submerged autonomous underwater vehicles (AUVs) using the Time Difference of Arrival (TDOA) measurements of surface AUV sensors is an effective method for many applications of AUVs. Proper positioning of the sensors to maximize the observability of the AUVs is very critical for cooperative localization. In this paper, a novel method for obtaining the optimal formation of sensor AUVs has been presented for the three-dimensional (3D) cooperative localization of targets using the TDOA technique. An evaluation function for estimating the optimal formation has been derived based on Fisher Information Matrix (FIM) theory for a single target as well as multiple-target cooperative localization systems. An iterative stepping algorithm has been followed to solve the evaluation function and obtain the optimal positions of the sensors. The algorithm ensured that the computation complexity should remain limited, even when the number of sensor AUVs is increased. Various simulation examples are then presented to calculate the optimal formation for different systems/situations. The effect of the position of the reference sensor and operating depth of the target AUVs on the optimal formation of the sensors has also been studied, and conclusions are drawn. For implementation of the proposed method for more practical scenarios, a simulation example is also presented for cases when the target’s position is only known with uncertainty.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Underwater Acoustic System Analysis;Burdic,2002

2. Multi-robot cooperative localization based on relative bearing;Wang;Chin. J. Sens. Actuators,2007

3. An algorithm of multi-AUVs cooperative location considering clock synchronization;Zhang;Torpedo Technol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3