Telepresence with Hologram Effect: Technological Ecosystem for Distance Education

Author:

Ramirez-Lopez Carla VictoriaORCID,Castano LeticiaORCID,Aldape PatriciaORCID,Tejeda Santa

Abstract

One of the most significant challenges of telepresence distance education is to bring the professor and the students closer together in a synchronistic educational experience where the professor is perceived as anatomically proportionate. Telepresence, an educational technology ecosystem using holograms, offers a way to solve this technological challenge. Our mixed exploratory research investigating this methodology had two purposes: (1) propose the key elements to teach distance courses synchronously in an educational technology ecosystem, and (2) demonstrate the technological, didactic practices that result in positive student learning outcomes in several specified courses. This methodology included applying a student questionnaire to collect their perceptions of the educational experience. The scores and written comments from the questionnaire were analyzed using Grounded Theory. On a Likert scale from 1 to 5, the students scored their educational experience, attaining a mean of 4.05. The positive perception affirmed that they valued: (a) recreating the natural dynamics of face-to-face classes, where the students perceived their professors as being physically present in the classroom; (b) professors renowned in their disciplines; (c) professor–student and campus and intercampus learning community interactions, and, finally, (d) class design and content. The main conclusions of this research were that students positively perceived the “wow” effect of the technology, feeling comfort, amazement, interest, and engagement. In addition, we found that professors and keynote speakers with excellent pedagogical skills and experts in their disciplines were well appreciated. Key elements for the success of the experience were professor-student, campus, and intercampus interactions and the quality of the technological and communication infrastructure.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3