Real-time intelligent 3D holographic photography for real-world scenarios

Author:

Song XianlinORCID,Dong Jiaqing,Liu Minghao,Sun Zehao,Zhang Zibang1ORCID,Xiong Jianghao2ORCID,Li Zilong,Liu Xuan,Liu Qiegen

Affiliation:

1. Jinan University

2. Beijing Institute of Technology

Abstract

Three-dimensional (3D) display can provide more information than two-dimensional display, and real-time 3D reconstruction of the real-world environment has broad application prospects as a key technology in the field of meta-universe and Internet of Things. 3D holographic display is considered to be an ideal 3D display scheme, thus enhancing the computational speed and reconstruction quality of 3D holograms can offer substantial support for real-time 3D reconstruction. Here, we proposed a real-time 3D holographic photography for real-world scenarios driven by both physical model and artificial intelligence. The 3D information of the real scene was acquired by a depth camera and then divided into 30 layers using the layer-based method. Convolutional neural networks (CNN) were used to build the mapping of intensity and depth maps to computer-generated holograms (CGH). The differentiability of the angular spectrum algorithm was used to realize the self-supervised training of the network, while the composite loss function was employed to optimize network parameters by calculating the loss between reconstructed and target images. The trained network can generate a CGH with a resolution of 1024×1024 in 14.5 ms. The proposed system operates at 22 frames per second and successfully reconstructs 3D video of dynamic scene. The system exhibits significant potential for application in intelligent manufacturing, remote office work, distance education and other fields.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3