A General Return-Mapping Framework for Fractional Visco-Elasto-Plasticity

Author:

Suzuki Jorge L.ORCID,Naghibolhosseini MaryamORCID,Zayernouri Mohsen

Abstract

We develop a fractional return-mapping framework for power-law visco-elasto-plasticity. In our approach, the fractional viscoelasticity is accounted for through canonical combinations of Scott-Blair elements to construct a series of well-known fractional linear viscoelastic models, such as Kelvin–Voigt, Maxwell, Kelvin–Zener, and Poynting–Thomson. We also consider a fractional quasi-linear version of Fung’s model to account for stress/strain nonlinearity. The fractional viscoelastic models are combined with a fractional visco-plastic device, coupled with fractional viscoelastic models involving serial combinations of Scott-Blair elements. We then develop a general return-mapping procedure, which is fully implicit for linear viscoelastic models, and semi-implicit for the quasi-linear case. We find that, in the correction phase, the discrete stress projection and plastic slip have the same form for all the considered models, although with different property and time-step-dependent projection terms. A series of numerical experiments is carried out with analytical and reference solutions to demonstrate the convergence and computational cost of the proposed framework, which is shown to be at least first-order accurate for general loading conditions. Our numerical results demonstrate that the developed framework is more flexible and preserves the numerical accuracy of existing approaches while being more computationally tractable in the visco-plastic range due to a reduction of 50% in CPU time. Our formulation is especially suited for emerging applications of fractional calculus in bio-tissues that present the hallmark of multiple viscoelastic power-laws coupled with visco-plasticity.

Funder

ARO YIP Award

NSF Award

MURI/ARO Award

AFOSR YIP Award

NIH NIDCD

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3