Fractional-order viscoelastic model of musculoskeletal tissues: correlation with fractals

Author:

Guo Jianqiao1,Yin Yajun2,Peng Gang2

Affiliation:

1. MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People’s Republic of China

2. Department of Engineering Mechanics, Tsinghua University, Beijing, People’s Republic of China

Abstract

Self-similar fractals are widely obtained from biomaterials within the human musculoskeletal system, and their viscoelastic behaviours can be described by fractional-order derivatives. However, existing viscoelastic models neglect the internal correlation between the fractal structure of biomaterials and their fractional-order temporal responses. We further expanded the fractal hyper-cell (FHC) viscoelasticity theory to investigate this spatio-temporal correlation. The FHC element was first compared with other material elements and spring–dashpot viscoelastic models, thereby highlighting its discrete and fractal nature. To demonstrate the utility of an FHC, tree-like, ladder-like and triangle-like FHCs were abstracted from human cartilage, tendons and muscle cross-sections, respectively. The duality and symmetry of the FHC element were further discussed, where operating the duality transformation generated new types of FHC elements, and the symmetry breaking of an FHC altered its fractional-order viscoelastic responses. Thus, the correlations between the staggering patterns of FHCs and their rheological power-law orders were established, and the viscoelastic behaviour of the multi-level FHC elements fitted well in stress relaxation experiments at both the macro- and nano-levels of the tendon hierarchy. The FHC element provides a theoretical basis for understanding the connections between structural degeneration of bio-tissues during ageing or disease and their functional changes.

Funder

National Basic Research Program of China

China Postdoctoral Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3