Abstract
This paper provides a unified framework for the admissibility of a class of singular fractional-order systems with a given fractional order in the interval (0, 2). These necessary and sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The considered fractional orders range from 0 to 2 without separating the ranges into (0, 1) and [1, 2) to discuss the admissibility. Moreover, the uncertain system with the fractional order in the interval (0, 2) is norm-bounded. The quadratic admissibility and general quadratic stability of the system are analyzed, and the equivalence between the two is proved. All the above can be expressed in terms of strict LMIs to avoid any singularity problem in the solution. Finally, the effectiveness of the method is illustrated by three numerical examples.
Funder
fundamental research funds for the central universities
national key research and development program topic
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献