Novel Admissibility Criteria and Multiple Simulations for Descriptor Fractional Order Systems with Minimal LMI Variables

Author:

Wang Xinhai1ORCID,Zhang Jin-Xi2ORCID

Affiliation:

1. College of Sciences, Northeastern University, Shenyang 110819, China

2. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China

Abstract

In this paper, we first present multiple numerical simulations of the anti-symmetric matrix in the stability criteria for fractional order systems (FOSs). Subsequently, this paper is devoted to the study of the admissibility criteria for descriptor fractional order systems (DFOSs) whose order belongs to (0, 2). The admissibility criteria are provided for DFOSs without eigenvalues on the boundary axes. In addition, a unified admissibility criterion for DFOSs involving the minimal linear matrix inequality (LMI) variable is provided. The results of this paper are all based on LMIs. Finally, numerical examples were provided to validate the accuracy and effectiveness of the conclusions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Xingliao Talent Program of Liaoning Province of China

Science and Technology Foundation of Liaoning Province of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Reference41 articles.

1. Bounded real lemma for singular linear continuous-time fractional-order systems;Marir;Automatica,2022

2. Robust H∞ sliding mode observer design for a class of Takagi-Sugeno fuzzy descriptor systems with time-varying delay;Li;Appl. Math. Comput.,2018

3. Robust H∞ observer-based sliding mode control for uncertain Takagi-Sugeno fuzzy descriptor systems with unmeasurable premise variables and time-varying delay;Li;Inf. Sci.,2021

4. Stability and robust stabilization of uncertain switched fractional order systems;Zhang;ISA Trans.,2020

5. Observer-based robust control for singular switched fractional order systems subject to actuator saturation;Wang;Appl. Math. Comput.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3