Abstract
Rural community population forecasting has important guiding significance to rural construction and development. In this study, a novel grey Bernoulli model combined with an improved Aquila Optimizer (IAO) was used to forecast rural community population in China. Firstly, this study improved the Aquila Optimizer by combining quasi-opposition learning strategy and wavelet mutation strategy, and proposed the new IAO algorithm. By comparing with other algorithms on CEC2017 test functions, the proposed IAO algorithm has the advantages of faster convergence speed and higher convergence accuracy. Secondly, based on the data of China’s rural community population from 1990 to 2019, a consistent fractional accumulation nonhomogeneous grey Bernoulli model called CFANGBM(1, 1, b, c) was established for rural population forecasting. The proposed IAO algorithm was used to optimize the parameters of the model, and then the rural population of China was predicted. Four error measures were used to evaluate the model, and by comparing with other forecasting models, the experimental results show that the proposed model had the smallest error between the forecasted value and the real value, which illustrates the effectiveness of using the IAO algorithm to solve CFANGBM(1, 1, b, c). At the end of this paper, the forecast data of China’s rural population from 2020 to 2024 are given for reference.
Funder
National Social Science Foundation Project Research on Cultural Landscape Protection of Ethnic Minority Traditional Villages in Western Hubei.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Reference41 articles.
1. Economic transition, urbanization and population redistribution in China
2. Rural population transferring trend and spatial direction;Yan;China Popul. Resour. Environ.,2017
3. Rural Population Prediction from the Perspective of “Rural-Urban” Dynamic Migration—Take Heilongjiang Province as an Example;Lv;J. Dalian Univ.,2019
4. Prediction and Analysis of Rural Population in China based on ARIMA Model;Guan;J. Shandong Agric. Eng. Univ.,2019
5. A Model in Chinese Population Growth Prediction. Applied Mechanics and Materials;Xuan,2014
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献