Hybrid Aquila optimizer for efficient classification with probabilistic neural networks

Author:

Alweshah Mohammed1,Alessa Mustafa1,Alkhalaileh Saleh1,Kassaymeh Sofian2,Abu-Salih Bilal3

Affiliation:

1. Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al-Salt, Jordan

2. Software Engineering Department, Faculty of Information Technology, Aqaba University of Technology, Aqaba, Jordan

3. King Abdullah II School of Information Technology, The University of Jordan, Amman, Jordan

Abstract

The model of a probabilistic neural network (PNN) is commonly utilized for classification and pattern recognition issues in data mining. An approach frequently used to enhance its effectiveness is the adjustment of PNN classifier parameters through the outcomes of metaheuristic optimization strategies. Since PNN employs a limited set of instructions, metaheuristic algorithms provide an efficient way to modify its parameters. In this study, we have employed the Aquila optimizer algorithm (AO), a contemporary algorithm, to modify PNN parameters. We have proposed two methods: Aquila optimizer based probabilistic neural network (AO-PNN), which uses both local and global search capabilities of AO, and hybrid Aquila optimizer and simulated annealing based probabilistic neural network (AOS-PNN), which integrates the global search abilities of AO with the local search mechanism of simulated annealing (SA). Our experimental results indicate that both AO-PNN and AOS-PNN perform better than the PNN model in terms of accuracy across all datasets. This suggests that they have the potential to generate more precise results when utilized to improve PNN parameters. Moreover, our hybridization technique, AOS-PNN, is more effective than AO-PNN, as evidenced by classification experiments accuracy, data distribution, convergence speed, and significance. We have also compared our suggested approaches with three different methodologies, namely Coronavirus herd immunity optimizer based probabilistic neural network (CHIO-PNN), African buffalo algorithm based probabilistic neural network (ABO-PNN), and β-hill climbing. We have found that AO-PNN and AOS-PNN have achieved significantly higher classification accuracy rates of 90.68 and 93.95, respectively.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3