Seed Priming Enhances Seed Germination and Morphological Traits of Lactuca sativa L. under Salt Stress

Author:

Adhikari BikashORCID,Olorunwa Omolayo J.ORCID,Barickman T. CaseyORCID

Abstract

Seed germination is the stage in which plants are most sensitive to abiotic stress, including salt stress (SS). SS affects plant growth and performance through ion toxicity, decreasing seed germination percentage and increasing the germination time. Several priming treatments were used to enhance germination under SS. The objectives of this study were (1) to identify priming treatments to shorten the emergence period, (2) to evaluate priming treatments against the SS, and (3) to induce synchronized seed germination. Salt-sensitive ‘Burpee Bibb’ lettuce seeds were treated with 0.05% potassium nitrate, 3 mM gibberellic acid, and distilled water. All the primed and non-primed seeds were subjected to 100 mM sodium chloride (NaCl) or 0 mM NaCl (control). The seven-day experiment, arranged in a complete randomized block design with four replications, was conducted in a growth chamber maintained with 16/8 h photoperiod (light/dark), 60% relative humidity, and a day/night temperature of 22/18 °C. The result indicated that hydro-primed (HP) seeds were better synchronized under SS. Similarly, fresh mass (FM) and dry mass (DM) of cotyledon, hypocotyl, and radicle were the highest in HP lettuce regardless of SS. Electrolyte leakage was the lowest in the HP lettuce, while other priming methods under SS increased membrane permeability, leading to osmotic stress and tissue damage. Overall, hydro-priming can be a good priming method for synchronizing germination and increasing FM and DM by creating the least osmotic stress and ion toxicity in lettuce under SS.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Reference73 articles.

1. Seed priming to alleviate salinity stress in germinating seeds

2. Rice in saline soils: Physiology, biochemistry, genetics, and management;Hussain,2018

3. Salinity a Serious Threat to Food Security—Where Do We Stand?;Zaman;Int. At. Energy Agency Bull.,2016

4. A New Insight of Salt Stress Signaling in Plant

5. State of the Global Climate 2020: Provisional Report,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3