Seed Priming and Biopriming in Two Squash Landraces (Cucurbita maxima Duchesne) from Tunisia: A Sustainable Strategy to Promote Germination and Alleviate Salt Stress
Author:
Tarchoun Néji1ORCID, Saadaoui Wassim1, Hamdi Khawla1, Falleh Hanen2ORCID, Pavli Ourania3ORCID, Ksouri Riadh2, Petropoulos Spyridon A.4ORCID
Affiliation:
1. Research Laboratory LR21AGR05, High Agronomic Institute of Chott Mariem, Sousse University, Sousse 4042, Tunisia 2. Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Technopark of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia 3. Laboratory of Genetics and Plant Breeding, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece 4. Laboratory of Vegetable Production, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
Abstract
In recent years, seed priming has gained interest, with researchers aiming to enhance seed germination and early growth, especially under abiotic stress conditions. In this study, seeds from two squash landraces (Cucurbita maxima Duchesne; i.e., Galaoui large seeds (Galaoui hereafter) and Batati green (Batati hereafter)) were subjected to different priming methods ((a) 0.3% and 0.4% KNO3 (halopriming); (b) 0.1% and 0.2% GA3 (hormopriming); (c) inoculation with Trichoderma spp. (T. harzianum, T. viride, and T. virens), Bacillus subtilis, and Pseudomonas fluorescens (biopriming) in order to promote germination parameters and seedling growth under salinity stress (0, 100, and 200 mM of NaCl). Our findings indicate the better performance of primed seeds compared to the untreated ones in terms of germination and seedling growth traits, although a varied response depending on the priming method and the landrace was observed. The highest germination percentage (GP) and the lowest mean germination time (MGT) were observed in 0.4% KNO3-primed seeds. The positive effects of 0.4% KNO3 were also depicted in all traits related to seedling growth and the seedling vigor index (SVI), indicating its effectiveness as a priming agent in squash seeds. Under salinity stress conditions, priming with 0.4% KNO3 significantly improved the germination and seedling growth traits for both landraces, while the application of 0.2% GA3 at high salinity significantly improved photosynthetic quantum yield (Fv/Fm ratio). Regarding the effects of biopriming in germination and seedling growth traits, our results indicate that T. harzianum and B. subtilis were the most effective bioagents in promoting germination and seedling growth in Galaoui and Batati seeds, respectively. In conclusion, our findings provide important information regarding the practice of using priming and biopriming agents to enhance the germination and seedling growth capacity of squash seeds, as well to mitigate the negative effects of salinity stress at the critical stages of germination and early growth.
Funder
General Secretariat for Research and Technology PRIMA
Reference81 articles.
1. Ali, S., Liu, Y., Ishaq, M., Shah, T., Ilyas, A., and Din, I.U. (2017). Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 6. 2. Hatfield, J.L., and Dold, C. (2019). Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci., 10. 3. Shahid, M.A., Sarkhosh, A., Khan, N., Balal, R.M., Ali, S., Rossi, L., Gómez, C., Mattson, N., Nasim, W., and Garcia-Sanchez, F. (2020). Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy, 10. 4. Giordano, M., Petropoulos, S.A., and Rouphael, Y. (2021). Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture, 11. 5. Wolny, E., Betekhtin, A., Rojek, M., Braszewska-Zalewska, A., Lusinska, J., and Hasterok, R. (2018). Germination and the early stages of seedling development in Brachypodium distachyon. Int. J. Mol. Sci., 19.
|
|