Scaling Energy Transfer in Ball Mills: A Scale-Agnostic Approach through a Universal Scaling Constant

Author:

Doroszuk Błażej1ORCID,Bortnowski Piotr1ORCID,Ozdoba Maksymilian1ORCID,Król Robert1ORCID

Affiliation:

1. Department of Mining, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, ul. Na Grobli 15, 50-421 Wroclaw, Poland

Abstract

Ball mills are widely used for size reduction in mineral processing, but effective scaling from laboratory to industrial scale remains challenging. This study introduces a novel scaling constant approach to replicate energy transfer to ore during milling across different scales by adjusting rotational speed and grinding medium size distribution. The scaling constant encapsulates parameters like the number of balls per working area, rotational speed, and an average ball’s maximum potential and kinetic energies. Experiments were conducted using a laboratory ball mill with interchangeable drum sizes (300, 400, and 500 mm) and a Design of Experiments methodology. Statistical analysis revealed that the scaling constant was more effective at maintaining consistent specific energy and energy per rotation across scales than size reduction, especially in dry milling. Wet milling results showed no significant differences in all metrics across scales. The dominant charge motion shifted from centrifuging to cascading as the mill diameter increased, highlighting the complex scaling dynamics. While the scaling constant shows promise for maintaining energy utilization, additional factors like charge motion and particle breakage mechanisms should be considered. The findings provide insights for improving ball mill design and optimization in mineral processing.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3