Estimating Residence Time Distributions in Industrial Closed-Circuit Ball Mills

Author:

Vinnett LuisORCID,Contreras Felipe,Díaz Francisco,Pino-Muñoz CatalinaORCID,Ledezma Tania

Abstract

This paper compares two deconvolution methodologies used to estimate residence time distributions (RTD) in industrial closed-circuit ball mills. Parametric and non-parametric deconvolution techniques were evaluated. Both techniques allowed for direct RTD estimates from inlet and outlet tracer measurements in the mills, with no need for mass balances nor assumptions to correct the effect of the tracer recirculation in the grinding circuits. Measurements of inlet and outlet concentrations were conducted by radioactive solid tracers and on-stream detectors. The parametric deconvolution was applied assuming the N-perfectly-mixed-reactors-in-series model, whereas the non-parametric deconvolution consisted of a constrained least squares estimation subject to non-negativity. The shapes of the estimated RTDs were consistent between these methodologies, showing mound-shaped distributions in all cases. From the parametric approach, mixing regimes described by 2–4 perfect mixers in series were observed, which indicated significant differences regarding perfect mixing. The mean (τmean) and median (τ50) residence times were more consistent with the RTD shapes when applying the parametric deconvolution. The non-parametric approach was more sensitive to noise, a disadvantage leading to mean residence times significantly higher than the median, and less consistent with the RTD locations. From the comparisons, the estimation strategies proved to be applicable in industrial closed-circuit ball mills. The parametric deconvolution led to better overall performances for τ50 = 1.7–8.3 min, given a suitable model structure for the RTDs.

Funder

Universidad Técnica Federico Santa María

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3