Evaluation of Remote-Sensing Reflectance Products from Multiple Ocean Color Missions in Highly Turbid Water (Hangzhou Bay)

Author:

Xu Yuzhuang,He Xianqiang,Bai Yan,Wang DifengORCID,Zhu Qiankun,Ding Xiaosong

Abstract

Validation of remote-sensing reflectance (Rrs) products is necessary for the quantitative application of ocean color satellite data. While validation of Rrs products has been performed in low to moderate turbidity waters, their performance in highly turbid water remains poorly known. Here, we used in situ Rrs data from Hangzhou Bay (HZB), one of the world’s most turbid estuaries, to evaluate agency-distributed Rrs products for multiple ocean color sensors, including the Geostationary Ocean Color Imager (GOCI), Chinese Ocean Color and Temperature Scanner aboard HaiYang-1C (COCTS/HY1C), Ocean and Land Color Instrument aboard Sentinel-3A and Sentinel-3B, respectively (OLCI/S3A and OLCI/S3B), Second-Generation Global Imager aboard Global Change Observation Mission-Climate (SGLI/GCOM-C), and Visible Infrared Imaging Radiometer Suite aboard the Suomi National Polar-orbiting Partnership satellite (VIIRS/SNPP). Results showed that GOCI and SGLI/GCOM-C had almost no effective Rrs products in the HZB. Among the others four sensors (COCTS/HY1C, OLCI/S3A, OLCI/S3B, and VIIRS/SNPP), VIIRS/SNPP obtained the largest correlation coefficient (R) with a value of 0.7, while OLCI/S3A obtained the best mean percentage differences (PD) with a value of −13.30%. The average absolute percentage difference (APD) values of the four remote sensors are close, all around 45%. In situ Rrs data from the AERONET-OC ARIAKE site were also used to evaluate the satellite-derived Rrs products in moderately turbid coastal water for comparison. Compared with the validation results at HZB, the performances of Rrs from GOCI, OLCI/S3A, OLCI/S3B, and VIIRS/SNPP were much better at the ARIAKE site with the smallest R (0.77) and largest APD (35.38%) for GOCI, and the worst PD for these four sensors was only −13.15%, indicating that the satellite-retrieved Rrs exhibited better performance. In contrast, Rrs from COCTS/HY1C and SGLI/GCOM-C at ARIAKE site was still significantly underestimated, and the R values of the two satellites were not greater than 0.7, and the APD values were greater than 50%. Therefore, the performance of satellite Rrs products degrades significantly in highly turbid waters and needs to be improved for further retrieval of ocean color components.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3