Abstract
HY-1C/D both carry a coastal zone imager (CZI) with a spatial resolution of 50 m and a swath width of 950 km, two observations can be achieved in three days when two satellites operating in a network. Accurate atmospheric correction is the basis for quantitative inversion of ocean color parameters using CZI However, atmospheric correction in estuarine and coastal waters with complex optical properties is a challenge due to the band setting of CZI. This paper proposed a novel atmospheric correction algorithm for CZI images applicable to turbid waters in estuarine and coastal zone. The Rayleigh scattering reflectance of CZI was calculated based on a vector radiative transfer model. Next, a semi-empirical radiative transfer model with suspended particle concentration as the parameter is used to model the water-atmosphere coupling. Finally, the parameters of the coupling model are solved by combining a global optimization method based on a genetic algorithm. The results indicate that the CZI-derived remote-sensing reflectance (Rrs) are in good agreement with the quasi-synchronous Landsat-8/9 operational land imager (OLI) derived Rrs in the green and red bands (R2 > 0.96). Validation using in situ data revealed that the RMSE of the CZI-derived Rrs in the green and red bands was 0.0036 sr−1 and 0.0035 sr−1. More importantly, the values and spatial distributions of suspended particulate matter (SPM) estimated by CZI and those estimated by OLI in the Subei Shoal and the Yangtze River Estuary are basically consistent, and the validation using in situ data revealed that the inversion of SPM concentration by CZI was effective (R2 = 0.86, RMSE = 0.0362 g/L), indicating that CZI has great potential and broad application prospects for monitoring the spatial and temporal dynamics of SPM in estuarine and coastal waters. The study results will lay the foundation for further estimating suspended sediment fluxes and carbon fluxes, thus providing data support and scientific basis for promoting resource development, utilization and conservation strategies in estuarine and coastal areas.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献