A High-Resolution, Random Forest Approach to Mapping Depth-to-Bedrock across Shallow Overburden and Post-Glacial Terrain

Author:

Furze Shane,O’Sullivan Antóin M.,Allard Serge,Pronk Toon,Curry R. Allen

Abstract

Regolith, or unconsolidated materials overlying bedrock, exists as an active zone for many geological, geomorphological, hydrological and ecological processes. This zone and its processes are foundational to wide-ranging human needs and activities such as water supply, mineral exploration, forest harvesting, agriculture, and engineered structures. Regolith thickness, or depth-to-bedrock (DTB), is typically unavailable or restricted to finer scale assessments because of the technical and cost limitations of traditional drilling, seismic, and ground-penetrating radar surveys. The objective of this study was to derive a high-resolution (10 m2) DTB model for the province of New Brunswick, Canada as a case study. This was accomplished by developing a DTB database from publicly available soil profiles, boreholes, drill holes, well logs, and outcrop transects (n = 203,238). A Random Forest model was produced by modeling the relationships between DTB measurements in the database to gridded datasets derived from both a LiDAR-derived digital elevation model and photo-interpreted surficial geology delineations. In developing the Random Forest model, DTB measurements were split 70:30 for model development and validation, respectively. The DTB model produced an R2 = 92.8%, MAE = 0.18 m, and RMSE = 0.61 m for the training, and an R2 = 80.3%, MAE = 0.18 m, and RMSE = 0.66 m for the validation data. This model provides an unprecedented resolution of DTB variance at a landscape scale. Additionally, the presented framework provides a fundamental understanding of regolith thickness across a post-glacial terrain, with potential application at the global scale.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Atlantic Salmon Conservation Foundation

New Brunswick Innovation Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3