A Weak Sample Optimisation Method for Building Classification in a Semi-Supervised Deep Learning Framework

Author:

Wang Yanjun12ORCID,Lin Yunhao12,Huang Huiqing34,Wang Shuhan12,Wen Shicheng56,Cai Hengfan12ORCID

Affiliation:

1. National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of Science and Technology, Xiangtan 411201, China

2. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

3. The Third Surveying and Mapping Institute of Hunan Province, Changsha 410118, China

4. Hunan Geospatial Information Engineering and Technology Research Center, Changsha 410118, China

5. The Second Survey and Mapping Institute of Hunan Province, Changsha 410118, China

6. Hunan Provincial Natural Resources Survey and Monitoring Center, Changsha 410118, China

Abstract

Deep learning has gained widespread interest in the task of building semantic segmentation modelling using remote sensing images; however, neural network models require a large number of training samples to achieve better classification performance, and the models are more sensitive to error patches in the training samples. The training samples obtained in semi-supervised classification methods need less reliable weakly labelled samples, but current semi-supervised classification research puts the generated weak samples directly into the model for applications, with less consideration of the impact of the accuracy and quality improvement of the weak samples on the subsequent model classification. Therefore, to address the problem of generating and optimising the quality of weak samples from training data in deep learning, this paper proposes a semi-supervised building classification framework. Firstly, based on the test results of the remote sensing image segmentation model and the unsupervised classification results of LiDAR point cloud data, this paper quickly generates weak image samples of buildings. Secondly, in order to improve the quality of the spots of the weak samples, an iterative optimisation strategy of the weak samples is proposed to compare and analyse the weak samples with the real samples and extract the accurate samples from the weak samples. Finally, the real samples, the weak samples, and the optimised weak samples are input into the semantic segmentation model of buildings for accuracy evaluation and analysis. The effectiveness of this paper’s approach was experimentally verified on two different building datasets, and the optimised weak samples improved by 1.9% and 0.6%, respectively, in the test accuracy mIoU compared to the initial weak samples. The results demonstrate that the semi-supervised classification framework proposed in this paper can be used to alleviate the model’s demand for a large number of real-labelled samples while improving the ability to utilise weak samples, and it can be used as an alternative to fully supervised classification methods in deep learning model applications that require a large number of training samples.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3