Evaluating spatially enabled machine learning approaches to depth to bedrock mapping, Alberta, Canada

Author:

Pawley Steven M.ORCID,Atkinson Lisa,Utting Daniel J.,Hartman Gregory M. D.,Atkinson Nigel

Abstract

Maps showing the thickness of sediments above the bedrock (depth to bedrock, or DTB) are important for many geoscience studies and are necessary for many hydrogeological, engineering, mining, and forestry applications. However, it can be difficult to accurately estimate DTB in areas with varied topography, like lowland and mountainous terrain, because traditional methods of predicting bedrock elevation often underestimate or overestimate the elevation in rugged or incised terrain. Here, we describe a machine learning spatial prediction approach that uses information from traditional digital elevation model derived estimates of terrain morphometry and satellite imagery, augmented with spatial feature engineering techniques to predict DTB across Alberta, Canada. First, compiled measurements of DTB from borehole lithologs were used to train a natural language model to predict bedrock depth across all available lithologs, significantly increasing the dataset size. The combined data were then used for DTB modelling employing several algorithms (XGBoost, Random forests, and Cubist) and spatial feature engineering techniques, using a combination of geographic coordinates, proximity measures, neighbouring points, and spatially lagged DTB estimates. Finally, the results were contrasted with DTB predictions based on modelled relationships with the auxiliary variables, as well as conventional spatial interpolations using inverse-distance weighting and ordinary kriging methods. The results show that the use of spatially lagged variables to incorporate information from the spatial structure of the training data significantly improves predictive performance compared to using auxiliary predictors and/or geographic coordinates alone. Furthermore, unlike some of the other tested methods such as using neighbouring point locations directly as features, spatially lagged variables did not generate spurious spatial artifacts in the predicted raster maps. The proposed method is demonstrated to produce reliable results in several distinct physiographic sub-regions with contrasting terrain types, as well as at the provincial scale, indicating its broad suitability for DTB mapping in general.

Publisher

Public Library of Science (PLoS)

Reference51 articles.

1. A high-resolution global-scale groundwater model.;IEM Graaf;Hydrology and Earth System Sciences,2015

2. The thickness of Neogene and Quaternary cover across the central Interior Plateau, British Columbia: analysis of water-well drill records and implications for mineral exploration potential;GDM Andrews;Canadian Journal of Earth Sciences,2011

3. Influence of rock depth on seismic site classification for shallow bedrock regions.;P Anbazhagan;Natural Hazards Review.,2013

4. How runoff begins (and ends): Characterizing hydrologic response at the catchment scale.;BB Mirus;Water Resources Research,2013

5. The role of bedrock topography on subsurface storm flow;J Freer;Water Resources Research,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3