Application of Fuzzy-Based Support Vector Regression to Forecast of International Airport Freight Volumes

Author:

Yang Cheng-Hong,Shao Jen-Chung,Liu Yen-Hsien,Jou Pey-Huah,Lin Yu-DaORCID

Abstract

As freight volumes increase, airports are likely to require additional infrastructure development, increased air services, and expanded facilities. Prediction of freight volumes could ensure effective investment. Among the computational intelligence models, support vector regression (SVR) has become the dominant modeling paradigm. In this study, a fuzzy-based SVR (FSVR) model was used to solve the freight volume prediction problem in international airports. The FSVR model can use a fuzzy time series of historical traffic changes for predictions. A fuzzy classification algorithm was used for elements of similar levels in the time series to appropriately divide traffic changes into fuzzy sets, generate membership function values, and establish a fuzzy relationship to produce a fuzzy interpolation with a minimal error. A comparison of the FSVR model with other models revealed that the FSVR model had the lowest mean absolute percentage error (all < 2.5%), mean absolute error, and root mean square error for all types of traffic at all the analyzed airports. Fuzzy sets can handle uncertainty and imprecision in time series. Therefore, the prediction accuracy of the entire time series model is improved by taking advantage of SVR and fuzzy sets. By using the highly accurate FSVR model to predict the future growth of air freight volume, airport management could analyze their existing facilities and service capacity to identify operational bottlenecks and plan future development. The FSVR model is the most accurate forecasting model for air traffic forecasting.

Funder

Cheng-Hong Yang

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference43 articles.

1. Globalization: The Essentials;Ritzer,2019

2. Factors driving embodied carbon in international trade: a multiregional input–output gravity model

3. Revisiting the Determinants of Capital Flows to Emerging Markets—A Survey of the Evolving Literature;Hannan,2018

4. International Business Management;Fatehi,2019

5. 20 Year Passenger Forecast,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3