MLCA—A Machine Learning Framework for INS Coarse Alignment

Author:

Zak Idan,Katz Reuven,Klein ItzikORCID

Abstract

Inertial navigation systems provides the platform’s position, velocity, and attitude during its operation. As a dead-reckoning system, it requires initial conditions to calculate the navigation solution. While initial position and velocity vectors are provided by external means, the initial attitude can be determined using the system’s inertial sensors in a process known as coarse alignment. When considering low-cost inertial sensors, only the initial roll and pitch angles can be determined using the accelerometers measurements. The accuracy, as well as time required for the for the coarse alignment process are critical for the navigation solution accuracy, particularly for pure-inertial scenarios, because of the navigation solution drift. In this paper, a machine learning framework for the stationary coarse alignment stage is proposed. To that end, classical machine learning approaches are used in a two-stage approach to regress the roll and pitch angles. Alignment results obtained both in simulations and field experiments, using a smartphone, shows the benefits of using the proposed approach instead of the commonly used analytical coarse alignment procedure.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. Strapdown Inertial Navigation Technology;Titterton,2004

2. Principles of GNSS, Inertial and Multisensor Integrated Navigation Systems;Groves,2013

3. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration;Noureldin,2012

4. Aided Navigation: GPS with High Rate Sensors;Farrell,2008

5. MEMS-Based Integrated Navigation;Aggarwal,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3