Analysis and compensation of residual gyro drifts on azimuth alignment accuracy in the RINS

Author:

Ye JiangnanORCID,Wang LeiORCID,Liu Di,Yan Lin

Abstract

Abstract The rotational inertial navigation system (INS) uses rotational alignment to improve azimuth alignment accuracy significantly. However, due to the existence of magnetic drifts in the fiber optic gyro, under the comprehensive influence of outside conditions, there will be residual drifts that cannot be averaged out along the body frame or the geographic frame, which will have a significant impact on azimuth alignment accuracy. An innovative and effective calibration compensation strategy is proposed by analyzing the generation mechanism of residual drifts and their influence on alignment accuracy, which can significantly improve azimuth alignment accuracy. With the aid of a high-precision total station, the experimental results of initial alignment in four directions show that the accuracy of azimuth alignment is improved from 16.47 ( 1 σ ) to 10.34 ( 1 σ ) by compensating residual drifts, which has significant theoretical significance and practical value in engineering applications for improving the overall performance of the INS.

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3