Abstract
As a strong candidate for computing in memory, 3D NAND flash memory has attracted great attention due to the high computing efficiency, which outperforms the conventional von-Neumann architecture. To ensure 3D NAND flash memory is truly integrated in the computing in a memory chip, a new candidate with high density and a large on/off current ratio is now urgently needed. Here, we first report that 3D NAND flash memory with a high density of multilevel storage can be realized in a double-layered Si quantum dot floating-gate MOS structure. The largest capacitance–voltage (C-V) memory window of 6.6 V is twice as much as that of the device with single-layer nc-Si quantum dots. Furthermore, the stable memory window of 5.5 V can be kept after the retention time of 105 s. The obvious conductance–voltage (G-V) peaks related to the charging process can be observed, which further confirms that the multilevel storage can be realized in double-layer Si quantum dots. Moreover, the on/off ratio of 3D NAND flash memory with a nc-Si floating gate can reach 104, displaying the characteristic of a depletion working mode of an N-type channel. The memory window of 3 V can be maintained after 105 P/E cycles. The programming and erasing speed can arrive at 100 µs under the bias of +7 V and −7 V. Our introduction of double-layer Si quantum dots in 3D NAND float gating memory supplies a new way to the realization of computing in memory.
Funder
the National Nature Science Foundation of China
Six Talent Peaks Project in Jiangsu Province
Subject
General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献