Abstract
To reduce the impact of volatility on photovoltaic (PV) power generation forecasting and achieve improved forecasting accuracy, this article provides an in-depth analysis of the characteristics of PV power outputs under typical weather conditions. The trend of PV power generation and the similarity between simultaneous outputs are found, and a hybrid prediction model based on feature matching, singular spectrum analysis (SSA) and a long short-term memory (LSTM) network is proposed. In this paper, correlation analysis is used to verify the trend of PV power generation; the similarity between forecasting days and historical meteorological data is calculated through grey relation analysis; and similar generated PV power levels are searched for phase feature matching. The input time series is decomposed by singular spectrum analysis; the trend component, oscillation component and noise component are extracted; and principal component analysis and reconstruction are carried out on each component. Then, an LSTM network prediction model is established for the reconstructed subsequences, and the external feature input is controlled to compare the obtained prediction results. Finally, the model performance is evaluated through the data of a PV power plant in a certain area. The experimental results prove that the SSA-LSTM model has the best prediction performance.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献