Air Traffic Flow Management Delay Prediction Based on Feature Extraction and an Optimization Algorithm

Author:

Zhao Zheng12,Yuan Jialing12,Chen Luhao12

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. State Key Laboratory of Air Traffic Management System, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Air Traffic Flow Management (ATFM) delay can quantitatively reflect the congestion caused by the imbalance between capacity and demand in an airspace network. Furthermore, it is an important parameter for the ex-post analysis of airspace congestion and the effectiveness of ATFM strategy implementation. If ATFM delays can be predicted in advance, the predictability and effectiveness of ATFM strategies can be improved. In this paper, a short-term ATFM delay regression prediction method is proposed for the characteristics of the multiple sources, high dimension, and complexity of ATFM delay prediction data. The method firstly constructs an ATFM delay prediction network model, specifies the prediction object, and proposes an ATFM delay prediction index system by integrating common flow control information. Secondly, an ATFM delay prediction method based on feature extraction modules (including CNN, TCN, and attention modules), a heuristic optimization algorithm (sparrow search algorithm (SSA)), and a prediction model (LSTM) are proposed. The method constructs a CNN-LSTM-ATT model based on SSA optimization and a TCN-LSTM-ATT model based on SSA optimization. Finally, four busy airports and their major waypoints in East China are selected as the ATFM delay prediction network nodes for example validation. The experimental results show that the MAEs of the two models proposed in this paper for ATFM delay regression prediction are 4.25 min and 4.38 min, respectively. Compared with the CNN-LSTM model, the errors are reduced by 2.71 min and 2.59 min, respectively. Compared with the TCN-LSTM model, the times are 3.68 min and 3.55 min, respectively. In this paper, two improved LSTM models are constructed to improve the prediction accuracy of ATFM delay duration so as to provide support for the establishment of an ATFM delay early warning mechanism, further improve ATFM delay management, and enhance resource allocation efficiency.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Nanjing University of Aeronautics and Astronautics Graduate Student Innovation and Practice Program

Publisher

MDPI AG

Reference38 articles.

1. Eurocontrol (2009). CFMU ATFCM Public Report December 2008, Eurocontrol.

2. International Civil Aviation Organization (ICAO) (2012). Manual on Collaborative Decision Making (CDM), International Civil Aviation Organization (ICAO). Doc 9971.

3. Eurocontrol (2013, June 06). Network Management Board. [EB/OL]. Available online: https://www.eurocontrol.int/.

4. Delgado, L., and Prats, X. (December, January 29). Simulation of airborne ATFM delay and delay recovery by cruise speed reduction. Proceedings of the 1st SESAR Innovation Days, Toulouse, France.

5. Estimating economic severity of air traffic flow management regulations;Delgado;Transp. Res. Part C Emerg. Technol.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3