Refining Long Short-Term Memory Neural Network Input Parameters for Enhanced Solar Power Forecasting

Author:

Bui Duy Linh1ORCID,Nguyen Quang Ninh12ORCID,Doan Van Binh12,Riva Sanseverino Eleonora3ORCID,Tran Thi Tu Quynh24,Le Thi Thuy Hang2ORCID,Le Quang Sang2,Le Cong Thinh2,Cu Thi Thanh Huyen2

Affiliation:

1. Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi 11307, Vietnam

2. Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam

3. Engineering Department, University of Palermo, 90128 Palermo, Italy

4. Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Abstract

This article presents a research approach to enhancing the quality of short-term power output forecasting models for photovoltaic plants using a Long Short-Term Memory (LSTM) recurrent neural network. Typically, time-related indicators are used as inputs for forecasting models of PV generators. However, this study proposes replacing the time-related inputs with clear sky solar irradiance at the specific location of the power plant. This feature represents the maximum potential solar radiation that can be received at that particular location on Earth. The Ineichen/Perez model is then employed to calculate the solar irradiance. To evaluate the effectiveness of this approach, the forecasting model incorporating this new input was trained and the results were compared with those obtained from previously published models. The results show a reduction in the Mean Absolute Percentage Error (MAPE) from 3.491% to 2.766%, indicating a 24% improvement. Additionally, the Root Mean Square Error (RMSE) decreased by approximately 0.991 MW, resulting in a 45% improvement. These results demonstrate that this approach is an effective solution for enhancing the accuracy of solar power output forecasting while reducing the number of input variables.

Funder

Institute of Science and Technology for Energy and Environment

Vietnam Academy of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3