VINS-Dimc: A Visual-Inertial Navigation System for Dynamic Environment Integrating Multiple Constraints

Author:

Fu Dong,Xia HaoORCID,Liu Yujie,Qiao Yanyou

Abstract

Most visual–inertial navigation systems (VINSs) suffer from moving objects and achieve poor positioning accuracy in dynamic environments. Therefore, to improve the positioning accuracy of VINS in dynamic environments, a monocular visual–inertial navigation system, VINS-dimc, is proposed. This system integrates various constraints on the elimination of dynamic feature points, which helps to improve the positioning accuracy of VINSs in dynamic environments. First, the motion model, computed from the inertial measurement unit (IMU) data, is subjected to epipolar constraint and flow vector bound (FVB) constraint to eliminate feature matching that deviates significantly from the motion model. This algorithm then combines multiple feature point matching constraints that avoid the lack of single constraints and make the system more robust and universal. Finally, VINS-dimc was proposed, which can adapt to a dynamic environment. Experiments show that the proposed algorithm could accurately eliminate the dynamic feature points on moving objects while preserving the static feature points. It is a great help for the positioning accuracy and robustness of VINSs, whether they are from self-collected data or public datasets.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3