Strain Rate Effect on the Ductile Brittle Transition in Grinding Hot Pressed SiC Ceramics

Author:

Huang Pai,Zhang Jiaqi

Abstract

Surface and subsurface damage are still persistent technical challenges for the abrasive machining hot pressed-silicon carbide (HP-SiC) ceramics. Therefore, an investigation of the material behavior and critical depth of ductile to brittle transition (DBT) is essential for improving high precision and quality grinding HP-SiC ceramics. In this paper, single-grit grinding experiments with different scratch speed were conducted to study strain rate effect on the critical depth of DBT. The nanoindentations were performed to test the hardness and Young’s modulus changes of DBT position under different scratch speeds. The material removal mechanism and phase changes underneath the scratch groove were investigated using Raman tests. Based on the specific energies consumed in ductile and brittle modes of machining, a theoretical model of the critical depth of DBT was developed. The experimental results suggest that high scratch speeds generate high nanohardness, high Young‘s modulus and high critical depth of DBT of HP-SiC ceramics. The measured critical depth of DBT shows a good agreement with the predicted value calculated by the developed model. The subsurface damage depth reduced with high strain rate. Furthermore, the Raman results revealed that dislocations and amorphous transformation dominated the ductile removal mechanism of HP-SiC grinding. The fracture chips and subsurface damage depth was determined by the lateral crack and median crack, respectively. This paper’s results provide a fundamental understanding of the effect of grinding speed on the material removal mode of HP-SiC ceramics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3