Using Crested Porcupine Optimizer Algorithm and CNN-LSTM-Attention Model Combined with Deep Learning Methods to Enhance Short-Term Power Forecasting in PV Generation

Author:

Fan Yiling12,Ma Zhuang12,Tang Wanwei12,Liang Jing12,Xu Pengfei12ORCID

Affiliation:

1. Hebei Key Laboratory of Intelligent Data Information Processing and Control, Tangshan University, Tangshan 063000, China

2. Tangshan Key Laboratory of Intelligent Motion Control System, Tangshan University, Tangshan 063000, China

Abstract

Due to the inherent intermittency, variability, and randomness, photovoltaic (PV) power generation faces significant challenges in energy grid integration. To address these challenges, current research mainly focuses on developing more efficient energy management systems and prediction technologies. Through optimizing scheduling and integration in PV power generation, the stability and reliability of the power grid can be further improved. In this study, a new prediction model is introduced that combines the strengths of convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and attention mechanisms, so we call this algorithm CNN-LSTM-Attention (CLA). In addition, the Crested Porcupine Optimizer (CPO) algorithm is utilized to solve the short-term prediction problem in photovoltaic power generation. This model is abbreviated as CPO-CLA. This is the first time that the CPO algorithm has been introduced into the LSTM algorithm for parameter optimization. To effectively capture univariate and multivariate time series patterns, multiple relevant and target variables prediction patterns (MRTPPs) are employed in the CPO-CLA model. The results show that the CPO-CLA model is superior to traditional methods and recent popular models in terms of prediction accuracy and stability, especially in the 13 h timestep. The integration of attention mechanisms enables the model to adaptively focus on the most relevant historical data for future power prediction. The CPO algorithm further optimizes the LSTM network parameters, which ensures the robust generalization ability of the model. The research results are of great significance for energy generation scheduling and establishing trust in the energy market. Ultimately, it will help integrate renewable energy into the grid more reliably and efficiently.

Funder

Science Research Project of the Hebei Education Department

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3