A Hybrid Deep Learning-Based Network for Photovoltaic Power Forecasting

Author:

Hussain Altaf1ORCID,Khan Zulfiqar Ahmad1ORCID,Hussain Tanveer1ORCID,Ullah Fath U Min1ORCID,Rho Seungmin2ORCID,Baik Sung Wook1ORCID

Affiliation:

1. Sejong University, Seoul 143-747, Republic of Korea

2. Department of Industrial Security, Chung-Ang University, Seoul 06974, Republic of Korea

Abstract

For efficient energy distribution, microgrids (MG) provide significant assistance to main grids and act as a bridge between the power generation and consumption. Renewable energy generation resources, particularly photovoltaics (PVs), are considered as a clean source of energy but are highly complex, volatile, and intermittent in nature making their forecasting challenging. Thus, a reliable, optimized, and a robust forecasting method deployed at MG objectifies these challenges by providing accurate renewable energy production forecasting and establishing a precise power generation and consumption matching at MG. Furthermore, it ensures effective planning, operation, and acquisition from the main grid in the case of superior or inferior amounts of energy, respectively. Therefore, in this work, we develop an end-to-end hybrid network for automatic PV power forecasting, comprising three basic steps. Firstly, data preprocessing is performed to normalize, remove the outliers, and deal with the missing values prominently. Next, the temporal features are extracted using deep sequential modelling schemes, followed by the extraction of spatial features via convolutional neural networks. These features are then fed to fully connected layers for optimal PV power forecasting. In the third step, the proposed model is evaluated on publicly available PV power generation datasets, where its performance reveals lower error rates when compared to state-of-the-art methods.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3