Kinetic Study of Pd-Promoting Effect on Cu/ZnO/Al2O3 Catalyst for Glycerol Hydrogenolysis to Produce 1,2-Propanediol at Low Hydrogen Pressure

Author:

Liu YuanqingORCID,Rempel Garry L.,Ng Flora T. T.

Abstract

The promoting effect of Pd on a Cu/ZnO/Al2O3 catalyst for the aqueous glycerol hydrogenolysis process to produce 1,2-propanediol was studied. At a lower hydrogen pressure (2.07 MPa), using the Cu/ZnO/Al2O3 catalyst with 2 wt% Pd doped, could significantly improve the glycerol conversion (97.2%) and 1,2-propanediol selectivity (93.3%) compared with the unpromoted catalyst (69.4% and 89.7%, respectively). A power-law kinetic model, which took into account all the elementary reactions including glycerol dehydration and its reverse reaction, acetol hydrogenation, side reactions and ethylene glycol formation, was developed to comprehensively investigate the effect of Pd. Though the rate of glycerol dehydration using the Pd-promoted catalyst was found to be slightly lower, mainly due to the reduced number of acidic sites after adding Pd, the glycerol conversion rate was notably higher compared with using the unpromoted catalyst, mainly attributed to the enhanced activity of acetol hydrogenation by Pd. The rapid hydrogenation of acetol can inhibit the reverse reaction of glycerol dehydration, resulting in a higher glycerol conversion rate, so that glycerol dehydration is considered as the rate-determining step. In contrast, when the unpromoted catalyst was used, the rate of reverse glycerol dehydration was drastically increased due to the elevated acetol concentration, especially at a lower hydrogen pressure, resulting in a slower glycerol conversion rate; thus, acetol hydrogenation became the rate determining step. In addition, Pd can improve the reducibility of the catalyst, allowing the CuO to be reduced in situ during the reaction. Therefore, catalyst deactivation due to any potential oxidation of metallic copper during the reaction can be prevented.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3