The Promoting Effect of Ni on Glycerol Hydrogenolysis to 1,2-Propanediol with In Situ Hydrogen from Methanol Steam Reforming Using a Cu/ZnO/Al2O3 Catalyst

Author:

Liu YuanqingORCID,Guo Xiaoming,Rempel Garry,Ng Flora

Abstract

Production of green chemicals using a biomass derived feedstock is of current interest. Among the processes, the hydrogenolysis of glycerol to 1,2-propanediol (1,2-PD) using externally supplied molecular hydrogen has been studied quite extensively. The utilization of methanol present in crude glycerol from biodiesel production can avoid the additional cost for molecular hydrogen storage and transportation, as well as reduce the safety risks due to the high hydrogen pressure operation. Recently the hydrogenolysis of glycerol with a Cu/ZnO/Al2O3 catalyst using in situ hydrogen generated from methanol steam reforming in a liquid phase reaction has been reported. This paper focusses on the effect of added Ni on the activity of a Cu/ZnO/Al2O3 catalyst prepared by an oxalate gel-co-precipitation method for the hydrogenolysis of glycerol using methanol as a hydrogen source. It is found that Ni reduces the conversion of glycerol but improves the selectivity to 1,2-PD, while a higher conversion of methanol is observed. The promoting effect of Ni on the selectivity to 1,2-PD is attributed to the slower dehydration of glycerol to acetol coupled with a higher availability of in situ hydrogen produced from methanol steam reforming and the higher hydrogenation activity of Ni towards the intermediate acetol to produce 1,2-PD.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3