Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives

Author:

Ferruzzi Gabriella1,Delcea Camelia2ORCID,Barberi Antonino3,Di Dio Vincenzo3,Di Somma Marialaura1ORCID,Catrini Pietro3ORCID,Guarino Stefania3ORCID,Rossi Federico4ORCID,Parisi Maria Laura4ORCID,Sinicropi Adalgisa4ORCID,Longo Sonia3

Affiliation:

1. Smart Grid and Energy Network (SGRE) Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, Piazzale Enrico Fermi 1, 80055 Portici, Italy

2. Department of Economic Informatics & Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania

3. Engineering Department, Università degli Studi di Palermo, Piazza Marina, 61, 90133 Palermo, Italy

4. Department of Biotechnology Chemistry and Pharmacy, Università di Siena, Via A. Moro 2, 53100 Siena, Italy

Abstract

In recent decades, the fight against climate change and the commitment to reduce greenhouse gases have shed a light on the production of energy from renewable sources, in particular those derived from solar energy. This has required the involvement of all stakeholders (producers, but also energy operators, authorities, distributors, and final consumers) which has led to the outline of a new scenario characterized by more efficient technologies, dedicated strategies and business models, and the research of alternatives solutions. Within solar technology, great attention has been given in recent years to concentrating solar power (CSP) technologies, both from research studies and technological development sides. This paper provides a theoretical framework based on a CSP literature review to define the state of the art and to identify research gaps and future research steps related to this technology. The work is based on an innovative bibliometric study to explore technical fields related to CSP, providing both a comprehensive framework with reference to the state of the art of the technology investigated, and a detailed analysis on CSP commercial applications, making the review a very useful tool for stakeholders and decision makers The results of the analysis: (1) help to clarify the technological advances of CSP, the strengths and weaknesses of the current technologies used (parabolic and tower systems are the most widespread), and indications of the prospects for dish systems; (2) identify an alternative to the economic problem that represents an obstacle to the diffusion of CSP, for example, by identifying the ability to couple it with thermal storage as a valid method to increase the flexibility of the system and reduce costs; (3) suggested hybrids, both with renewable and non-renewable technologies, identifying strengths and weaknesses for all the proposed proposals; (4) show that it is possible to identify new ongoing research such as that related to hydrogen production. This paper represents the first part of a larger research study developed within the SOLARGRID Project, which promotes and supports the development of innovative solutions for systems and components for CSP and concentrated photovoltaics (CPV) technologies, with the aim to enhance their energetic performances and economic competitiveness in applications for the distributed generation of both electric and thermal energy frameworks. The main findings of our study highlight that, though there is an increasing number of papers on the topic of CSP, several issues remain neglected.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3