Assessing the Role of Hydrogen in Sustainable Energy Futures: A Comprehensive Bibliometric Analysis of Research and International Collaborations in Energy and Environmental Engineering

Author:

Kut Paweł1ORCID,Pietrucha-Urbanik Katarzyna2ORCID,Zeleňáková Martina3ORCID

Affiliation:

1. Department of Heat Engineering and Air Conditioning, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland

2. Department of Water Supply and Sewerage Systems, Faculty of Civil, Environmental Engineering and Architecture, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959 Rzeszow, Poland

3. Institute of Circular and Sustainable Construction, Faculty of Civil Engineering, Technical University of Kosice, 040 01 Košice, Slovakia

Abstract

The main results highlighted in this article underline the critical significance of hydrogen technologies in the move towards carbon neutrality. This research focuses on several key areas including the production, storage, safety, and usage of hydrogen, alongside innovative approaches for assessing hydrogen purity and production-related technologies. This study emphasizes the vital role of hydrogen storage technology for the future utilization of hydrogen as an energy carrier and the advancement of technologies that facilitate effective, safe, and cost-efficient hydrogen storage. Furthermore, bibliometric analysis has been instrumental in identifying primary research fields such as hydrogen storage, hydrogen production, efficient electrocatalysts, rotary engines utilizing hydrogen as fuel, and underground hydrogen storage. Each domain is essential for realizing a sustainable hydrogen economy, reflecting the significant research and development efforts in hydrogen technologies. Recent trends have shown an increased interest in underground hydrogen storage as a method to enhance energy security and assist in the transition towards sustainable energy systems. This research delves into the technical, economic, and environmental facets of employing geological formations for large-scale, seasonal, and long-term hydrogen storage. Ultimately, the development of hydrogen technologies is deemed crucial for meeting sustainable development goals, particularly in terms of addressing climate change and reducing greenhouse gas emissions. Hydrogen serves as an energy carrier that could substantially lessen reliance on fossil fuels while encouraging the adoption of renewable energy sources, aiding in the decarbonization of transport, industry, and energy production sectors. This, in turn, supports worldwide efforts to curb global warming and achieve carbon neutrality.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3