CleanPage: Fast and Clean Document and Whiteboard Capture

Author:

Courtney JaneORCID

Abstract

The move from paper to online is not only necessary for remote working, it is also significantly more sustainable. This trend has seen a rising need for the high-quality digitization of content from pages and whiteboards to sharable online material. However, capturing this information is not always easy nor are the results always satisfactory. Available scanning apps vary in their usability and do not always produce clean results, retaining surface imperfections from the page or whiteboard in their output images. CleanPage, a novel smartphone-based document and whiteboard scanning system, is presented. CleanPage requires one button-tap to capture, identify, crop, and clean an image of a page or whiteboard. Unlike equivalent systems, no user intervention is required during processing, and the result is a high-contrast, low-noise image with a clean homogenous background. Results are presented for a selection of scenarios showing the versatility of the design. CleanPage is compared with two market leader scanning apps using two testing approaches: real paper scans and ground-truth comparisons. These comparisons are achieved by a new testing methodology that allows scans to be compared to unscanned counterparts by using synthesized images. Real paper scans are tested using image quality measures. An evaluation of standard image quality assessments is included in this work, and a novel quality measure for scanned images is proposed and validated. The user experience for each scanning app is assessed, showing CleanPage to be fast and easier to use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

Reference43 articles.

1. Text Retrieval from Scanned Forms Using Optical Character Recognition;Aggarwal,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3