Abstract
The move from paper to online is not only necessary for remote working, it is also significantly more sustainable. This trend has seen a rising need for the high-quality digitization of content from pages and whiteboards to sharable online material. However, capturing this information is not always easy nor are the results always satisfactory. Available scanning apps vary in their usability and do not always produce clean results, retaining surface imperfections from the page or whiteboard in their output images. CleanPage, a novel smartphone-based document and whiteboard scanning system, is presented. CleanPage requires one button-tap to capture, identify, crop, and clean an image of a page or whiteboard. Unlike equivalent systems, no user intervention is required during processing, and the result is a high-contrast, low-noise image with a clean homogenous background. Results are presented for a selection of scenarios showing the versatility of the design. CleanPage is compared with two market leader scanning apps using two testing approaches: real paper scans and ground-truth comparisons. These comparisons are achieved by a new testing methodology that allows scans to be compared to unscanned counterparts by using synthesized images. Real paper scans are tested using image quality measures. An evaluation of standard image quality assessments is included in this work, and a novel quality measure for scanned images is proposed and validated. The user experience for each scanning app is assessed, showing CleanPage to be fast and easier to use.
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging
Reference43 articles.
1. Text Retrieval from Scanned Forms Using Optical Character Recognition;Aggarwal,2018
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献